Friday, March 24, 2017

Nighttime Delta IV Blastoff Powers Military Comsat to Orbit for U.S. Allies: Photo/Video Gallery

New post on Universe Today

Nighttime Delta IV Blastoff Powers Military Comsat to Orbit for U.S. Allies: Photo/Video Gallery

by Ken Kremer

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL - The second round of March Launch Madness continued with the thunderous nighttime blastoff of a ULA Delta IV rocket powering a super swift military communications satellite to orbit in a collaborative effort of U.S. Allies from North America, Europe and Asia and the U.S. Air Force.

The next generation Wideband Global SATCOM-9 (WGS-9) military comsat mission for the U.S. Force lifted off atop a United Launch Alliance (ULA) Delta IV from Space Launch Complex-37 (SLC-37) on Saturday, March 18 at 8:18 p.m. EDT at Cape Canaveral Air Force Station, Florida.

Check out this expanding gallery of spectacular launch photos and videos gathered from my space journalist colleagues, myself and spectators ringing the space coast under crystal clear early evening skies.

ULA Delta IV rocket streaks to orbit carrying WGS-9 tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017. Credit: Julian Leek

Note that Round 3 of March Launch Madness is tentatively slated for March 29 with the SpaceX liftoff of the first ever reused Falcon 9 first stage from historic pad 39 on NASA's Kennedy Space Center.

The WGS-9 satellite was paid for by a six nation consortium that includes Canada, Denmark, Luxembourg, the Netherlands, New Zealand and the United States. It joins 8 earlier WGS satellites already in orbit.

The partnership was created back in 2012 when the 'WGS-9 Memorandum of Understanding (MOU)' was signed by Defense organizations of the six countries.

The WGS-9 MOU agreement to fund the satellite enabled the expansion of the WGS system with this additional satellite added to the existing WGS constellation.

"The agreement provides all signatories with assured access to global wideband satellite communications for military use," according to the US Air Force.

Watch this launch video compilation from Jeff Seibert:

Video Caption: Launch of WGS-9 satellite continues USAF Breaking Barriers heritage. This ULA Delta 4 launch of the WGS-9 satellite marks the start of the 70th anniversary of the United States Air Force. That was also the year that U.S. Air Force Captain Chuck Yeager broke the sound barrier. Credit: Jeff Seibert

The 217 foot tall Delta IV Medium+ rocket launched in the 5,4 configuration with a 5 meter diameter payload fairing that stands 47 feet tall, and 4 solid rocket boosters to augment the first stage thrust of the single common core booster.

The payload fairing was emblazoned with decals commemorating the 70th anniversary of the USAF, as well as Air Force, mission and ULA logos.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK manufactures the four solid rocket motors. The Delta IV common booster core was powered by an RS-68A liquid hydrogen/liquid oxygen engine producing 705,250 pounds of thrust at sea level.
A single RL10B-2 liquid hydrogen/liquid oxygen engine powered the second stage, known as the Delta Cryogenic Second Stage (DCSS).

The booster and upper stage engines are both built by Aerojet Rocketdyne. ULA constructed the Delta IV Medium+ (5,4) launch vehicle in Decatur, Alabama.

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Julian Leek

The DCSS will also serve as the upper stage for the maiden launch of NASA heavy lift SLS booster on the SLS-1 launch slated for late 2018. That DCSS/SLS-1 upper stage just arrived at the Cape last week - as I witnessed and reported here.

Saturday's launch marks ULA's 3rd launch in 2017 and the 118th successful launch since the company was formed in December 2006 as a joint venture between Boeing and Lockheed Martin.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken's continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Dawn Leek Taylor

Two AF Generals and a Delta! Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, and Brig. Gen. Wayne R. Monteith, Commander of the 45th Space Wing Commander and Eastern Range Director at Patrick Air Force Base, Fla, celebrate successful Wideband Global SATCOM (WGS-9) launch for the U.S. Air Force on ULA Delta IV from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017, with the media gaggle on base post launch with Delta pad 37 in background right. Credit: Ken Kremer/kenkremer.com

Comment    See all comments

Trouble clicking? Copy and paste this URL into your browser: 

http://www.universetoday.com/134648/nighttime-delta-iv-blastoff-powers-military-comsat-to-orbit-for-u-s-allies-photovideo-gallery/


BREAKING: Suns guard Devin Booker pours in 70 points in loss to Celtics

Having trouble viewing this email? | View it in your browser

FB TW g+ Ins

  The 20-year-old Booker became the youngest player to reach 70 points and recorded the 11th such game in NBA history. Booker finished with 70 points on 21-of-40 shooting, but Phoenix lost 130-120.

FOR MORE ON THIS STORY, GO TO:
  USATODAY.COM  
 


Help | Advertise | Home Delivery | Privacy Policy - Your California Privacy Rights  
  © 2017 USA TODAY, a division of Gannett Satellite Information Network, LLC.
7950 Jones Branch Drive, McLean, VA 22108


BREAKING: NCAA tournament: No. 7 South Carolina crushes No. 3 Baylor to reach Elite Eight for first time

Having trouble viewing this email? | View it in your browser

FB TW g+ Ins

  The seventh-seeded Gamecocks built a double-digit lead by halftime and rolled to a 70-50 win to advance to the Elite Eight for the first time in school history.

FOR MORE ON THIS STORY, GO TO:
  USATODAY.COM  
 

Help | Advertise | Home Delivery | Privacy Policy - Your California Privacy Rights  
  © 2017 USA TODAY, a division of Gannett Satellite Information Network, LLC.
7950 Jones Branch Drive, McLean, VA 22108


Watch Stars Orbit The Milky Way’s Supermassive Black Hole

New post on Universe Today

Watch Stars Orbit The Milky Way's Supermassive Black Hole

by Bob King

The Milky Way's supermassive black hole, called Sagittarius A* (or Sgr A*), is arrowed in the image made of the innermost galactic center in X-ray light by NASA's Chandra Observatory. To the left or east of Sgr A* is Sgr A East, a large cloud that may be the remnant of a supernova. Centered on Sgr A* is a spiral shaped group of gas streamers that might be falling onto the hole. Credit: NASA/CXC/MIT/Frederick K. Baganoff et al.

When your ordinary citizen learns there's a supermassive black hole with a mass of 4 million suns sucking on its teeth in the center of the Milky Way galaxy, they might kindly ask exactly how astronomers know this. A perfectly legitimate question. You can tell them that the laws of physics guarantee their existence or that people have been thinking about black holes since 1783. That year, English clergyman John Michell proposed the idea of "dark stars" so massive and gravitationally powerful they could imprison their own light.

This time-lapse movie in infrared light shows how stars in the central light-year of the Milky Way have moved over a period of 14 years. The yellow mark at the image center represents the location of Sgr A*, site of an unseen supermassive black hole.
Credit: A. Eckart (U. Koeln) & R. Genzel (MPE-Garching), SHARP I, NTT, La Silla Obs., ESO

Michell wasn't making wild assumptions but taking the idea of gravity to a logical conclusion. Of course, he had no way to prove his assertion. But we do. Astronomers  now routinely find bot stellar mass black holes — remnants of the collapse of gas-guzzling supergiant stars — and the supermassive variety in the cores of galaxies that result from multiple black hole mergers over grand intervals of time.

Some of the galactic variety contain hundreds of thousands to billions of solar masses, all of it so to speak "flushed down the toilet" and unavailable to fashion new planets and stars. Famed physicist Stephen Hawking has shown that black holes evaporate over time, returning their energy to the knowable universe from whence they came, though no evidence of the process has yet been found.

On September 14, 2013, astronomers caught the largest X-ray flare ever detected from Sgr A*, the supermassive black hole at the center of the Milky Way, using NASA's Chandra X-ray Observatory.  This event was 400 times brighter than the usual X-ray output from the source and was possibly caused when Sgr A*'s strong gravity tore apart an asteroid in its neighborhood, heating the debris to X-ray-emitting temperatures before slurping down the remains.The inset shows the giant flare. Credit: NASA

So how do we really know a massive, dark object broods at the center of our sparkling Milky Way? Astronomers use radio, X-ray and infrared telescopes to peer into its starry heart and see gas clouds and stars whirling about the center at high rates of speed. Based on those speeds they can calculate the mass of what's doing the pulling.

The Hubble Space Telescope took this photo of the  5000-light-year-long jet of radiation ejected from the active galaxy M87's supermassive black hole, which is aboutt 1,000 times more massive than the Milky Way's black hole. Although black holes are dark, matter whirling into their maws at high speed is heated to high temperature, creating a bright disk of material and jets of radiation. Credit: NASA/The Hubble Heritage Team (STScI/AURA)

In the case of the galaxy M87 located 53.5 million light years away in the Virgo Cluster, those speeds tell us that something with a mass of 3.6 billion suns is concentrated in a space smaller than our Solar System. Oh, and it emits no light! Nothing fits the evidence better than a black hole because nothing that massive can exist in so small a space without collapsing in upon itself to form a black hole. It's just physics, something that Mr. Scott on Star Trek regularly reminded a panicky Captain Kirk.

So it is with the Milky Way, only our black hole amounts to a piddling 4 million-solar-mass light thief confined within a spherical volume of space some 27 million miles in diameter or just shy of Mercury's perihelion distance from the Sun. This monster hole resides at the location of Sagittarius A* (pronounced A- star), a bright, compact radio source at galactic center about 26,000 light years away.


Video showing a 14-year-long time lapse of stars orbiting Sgr A*

The time-lapse movie, compiled over 14 years, shows the orbits of several dozen stars within the light year of space centered on Sgr A*. We can clearly see the star moving under the influence of a massive unseen body — the putative supermassive black hole. No observations of Sgr A* in visible light are possible because of multiple veils of interstellar dust that lie across our line of sight. They quench its light to the tune of 25 magnitudes.


Merging black holes (the process look oddly biological!). Credit: SXS

How do these things grow so big in the first place? There are a couple of ideas, but astronomers don't honestly know for sure. Massive gas clouds around early in the galaxy's history could have collapsed to form multiple supergiants that evolved into black holes which later then coalesced into one big hole. Or collisions among stars in massive, compact star clusters could have built up stellar giants that evolved into black holes. Later, the clusters sank to the center of the galaxy and merged into a single supermassive black hole.

Whichever you chose, merging of smaller holes may explain its origin.

On a clear spring morning before dawn, you can step out to face the constellation Sagittarius low in the southern sky. When you do, you're also facing in the direction of our galaxy's supermassive black hole. Although you cannot see it, does it not still exert a certain tug on your imagination?

Bob King | March 24, 2017 at 9:08 pm | Tags: Featured | URL: http://wp.me/p1CHIY-yJp
Comment    See all comments

Trouble clicking? Copy and paste this URL into your browser: 

http://www.universetoday.com/133511/watch-stars-orbit-milky-ways-supermassive-black-hole/


The Guardian today - Australia edition

View in browser


the guardian today - Australia edition
Saturday 25 Mar 2017
The Guardian logo
UK parliament attack More »
Met police seek to establish if Khalid Masood, who had violent criminal history, acted 'totally alone' or had support
Headlines More »
Weeks of negotiations over American Health Care Act fail to create GOP consensus around replacement bill in stunning defeat for Donald Trump
Sport More »
Culture More »
Comment is free More »
Life and style More »
Technology More »
Science More »
Environment More »
Video More »
Most viewed in last 24 hours More »
It was a humiliating defeat, which Donald Trump tried to blame – unbelievably – on the Democrats
The Guardian
Sport Culture Comment is free
Guardian News & Media Limited - a member of Guardian Media Group PLC. Registered Office: Kings Place, 90 York Way, London, N1 9GU. Registered in England No. 908396